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2. DETAILED SUMMARY OF TECHNICAL RESULTS

Sorting and Related Operations

Greg Plaxton [1989b] won the "best paper" award at SPAA for his recent work on three
related problems, each highly fundamental:

1. Load balancing: given a distribution of "tasks" to processors, move the task tokens
so each processor has an equal number of tasks.

2. Selection: Given n items and k between 1 and n, find the kth item in sorted order.
3. Sorting: given n items distributed equally among p processors, sort the items.

Other papers on the subject are Mayr and Plaxton [1989] and Plaxton [1989a, c).
Greg's techniques for sorting make use of new, more efficient algorithms for performing

(1) and (2) on the hypercube or similar networks. The end result is an algorithm like
quicksort, but with many points of division in a stage (rather than a single division point),
that outperforms other known algorithms such as cubesort or bitonic sort when n is larger
than p (the number of processors) by a small, nonconstant factor.

The model used is the standard hypercube model, where nodes can send along one
edge only at a given time. Previously, Plaxton reported an algorithm using a more powerful
model, where messages can pass along all edges, although a node cannot read or write (just
transmit) more than one message at a time. In that model, one can even improve upon
bitonic sort for the case n = p; O(log2 n/log log n) is achievable.

Recent work of Plaxton and Bob Cypher (U. Washington/IBM) gives an even better
asymptotic result for the standard hypercube model; they can sort in n elements on n pro-
cessors in O(log n(log log n)3 ) time. In truth, (log log n)3 only becomes better than log n
when n exceeds 21000, but the method involves a new operation that one can reasonably
hope will have a more efficient implementation, thus yielding an O(log n(log log n)2) algo-
rithm or better (then the crossover point would be about n = 1000, rather than n - 21000).
The new operation involves looking at a d-dimensional hypercube as a two-dimensional
grid, say with the row number equal to the first d/2 address bits and the column number
the last d/2 address bits. The rows must be sorted in the order of the elements that ap-
pear in the first column of each row. Since the best known algorithm for this operation
takes O(logn(loglogn) 2 ) time, and this is the critical part of the Cypher/Plaxton algo-
rithm, there is real hope that, eventually, we shall learn how to sort on the hypercube
almost as fast as on (practically unbuildable) expander networks (where O(logn) sorting
is theoretically achievable).
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Parallel Transitive Closure

Mihalis Yannakakis (Bell Labs) and Jeff Ullman (Ullman and Yannakakis [1989] have de-
veloped a family of parallel algorithms for solving transitive-closure-type problems. These
represent the first parallel algorithms for these fundamental problems that use less work
(time x processors) than the serial time to do matrix multiplication, yet take sublinear
time, in fact time n' for any c > 0.

Given a directed graph and a collection of "source" nodes, we may ask what nodes are
reachable from each source? The case where all nodes are sources is standard transitive
closure, and the case of a single source is standard "reachability." Problems with more
than one but fewer than all nodes as sources come up as subproblems in our solutions to
the standard problems.

If we have an n-node graph, we can take its TC in O(log 2 n) time with somewhat
fewer than n3 processors, which is about optimal work, since a serial algorithm takes n 3

time.t However, this approach uses much too much work in the cases where

1. There is a single source and/or
2. The graph is sparse, with e arcs, e << n2 .

The new approach uses less work in either of these cases. The algorithms are "Las
Vegas," in the sense that they give the correct answer at least half the time; when they
give no answer, they "give up" in the time stated. In the latter case, one restarts the
algorithm, so the expected time to success is, to within a factor of 2, the same as stated
below.

a) Single-source (reachability): For allowed time = t, work = eVn/ + en/t + n3 / t 4 . Ex-
ample: t = V/-; work = ev.4 / (i.e., e processors).

b) For all-pairs TC: For allowed time = t, work = en + n3 /t 2 . Example: t = ,/n; work
= en (optimal work).

Primitives for Data Sharing

It is an ongoing research question to determine the power of various primitive operations
for sharing data among many processors in a reliable manner. The goal is to understand
what primitive(s) should be implemented in hardware, and what can then be built from
them in software. (Uniprocessor analogy: choose to build test-and-set in hardware, then
implement P and V in software.)

Serge Plotkin [19891 has shown that a primitive called a "sticky bit" is universal, in
the sense that it can implement any wait-free object (data type with operations whose
execution cannot be delayed indefinitely by the slowness or failure of a process access-

ing it). Specifically, the paper proves "universality of consensus" in the sense that given
an algorithm to achieve consensus, it shows how to construct an atomic wait-free imple-

mentation of any sequential object using bounded memory. Thus, there is no wait-free 11

implementation of 2-value Read-Modify-Write (RMW) from safe bits and there is no wait-

free implementation of 3-value RMW from 2-value RMW. The 3-value RMW is universal in

t Really n3 stands for "whatever time you believe matrix multiplication takes."
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the sense that any RMW can be implemented from a 3-value RMW in a wait-free fashion.

Parallel Matching and Flow Algorithms

Andrew Goldberg and Serge Plotkin, along with Pravin Vaidya (Bell Labs) [1988] have
constructed the first sublinear-time deterministic parallel algorithm for bipartite matching.
More precisely, the algorithm runs in O(n2 /1 log3 n) time and uses 0(n 3 ) processors. These
techniques also yield the first sublinear time [0(\/' log5 n)] deterministic parallel algorithm
for constructing a depth-first search tree in a graph.

Goldberg, Plotkin, and Eva Tardos (MIT) have shown (1989] how to use interior-point
methods for linear programming, developed in the context of sequential computation, to
obtain parallel algorithms for bipartite matching and related problems. These techniques
yield an 0*(V/'log C)-timet algorithm for computing min-cost flow in networks with unit
capacities and integer costs, where the maximum cost is bounded by C and n is the
number of nodes in the network. This is the fastest currently known parallel deterministic
algorithm for this problem. It implies a weighted bipartite matching algorithm with the
same running time.

We have also made some progress on parallelizing interior-point methods for linear
programming. For example, we can solve bipartite matching with weights polynomial in
the number of nodes in approximately V/ time for a graph of e edges.

Also, a parallel algorithm for the blocking flow problem that uses time approximately
equal to the number of nodes and processors equal to the number of edges has been
discovered (Goldberg, Tardos, and Tarjan [1989], Goldberg and Tarjan [1989]).

Message-Passing vs. Shared Memory

Message-passing and shared memory models of computation are apparently distinct ideas.
However, Bar-Noy and Dolev [1989] shows that the models are related in that each can
implement a "synchronizer" building block efficiently. A synchronizer is a way to obtain all
the data needed by a given procedure, no matter where that data may be located, in such
a way that all procedures using the synchronizer methodology appear to have executed
atomically, in some serial order.

This paper shows that every algorithm using synchronizers fr interprocessor com-
munication works correctly and efficiently in both message-pas-sing and shared-memory
models. The interesting consequence comes from the fact that there are algorithms known
for one of these models that are better than any known algorithm for the same problem
in the other model. If these algorithms can be couched in terms of synchronizers, as many
can, then the algorithms can be carried from one model to the other, yielding best-known
algorithms for certain problems in both models. Examples are given in the paper.

Converting Randomized Algorithms to Deterministic Ones

The effective use of randomization in parallel algorithms is far more common than in
serial algorithms. In many cases, after discovery of a randomized parallel algorithm, there
is later discovered a deterministic algorithm that has the same worst-case performance

t 0* means "on the order of, neglecting factors of log n as well as constant factors."
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as the original had expected performance. Seffi Naor [1989] has developed a technique
that, for a large class of problems, called "lattice approximation problems," automatically
converts randomized algorithms to deterministic ones.

Adaptive Routing

In a really large network, say one million nodes, it is infeasible to store complete routing
information at each node. Thus, schemes have been developed that store partial informa-
tion at each node, so that the total space used to store routing tables is small and the path
taken by any packet will not be longer than some constant times the minimum possible
path. There is a known time-space tradeoff, in the sense that the larger you make the
tables, the closer to optimal routes can be.

In Awerbuch, Bar-Noy, Linial, and Peleg [1989a, b], schemes are proposed that not
only give close-to-optimal time-space tradeoff, but also offer the following, which previously
had not been achievable simultaneously.

1. Balanced memory. The sizes of the tables are the same at each node.
2. Name independence. One can move a node, only changing information about the

name of that node. (Contrast with the internet: if I physically took my machine,
known as nimbin.stanford.edu, and moved it to Berkeley, I could never receive mail
unless I renamed it nimbin.berkeley.edu.)

3. Arbitrary edge costs:. "Shortest" paths can be defined by weighted path length, rather
than just number of hops.

4. Efficient preprocessing: There is an efficient algorithm to construct the routing tables
from the network.

Radio Networks

A radio network is one in which a node can receive a message only if exactly one neighbor
is talking to it. When many nodes have something to say, it is nontrivial to get the nodes
organized quickly, so each will have an exclusive time slot for the "ear" of a node to which
it wants to talk.

Alon, Bar-Noy, Linial, and Peleg [1989 shows that the minimum number of rounds
needed for one of n nodes to broadcast the same message to all nodes is fl(log2 n). The
result holds even for networks of radius 2, where "ordinary" broadcast takes only constant
time, independent of n.

Fast Communication Model

It is reasonable to suppose that we are headed for an era where we can transmit bits faster
than a processor can read them. It thus becomes advantageous to design algorithms that
allow routing of messages with minimal delay. Essentially, each node must read a few bits
from the front of the message, delay the message only by the length of time it takes to
read those bits, and then know where to pass the rest of the message without delaying it.

This model of networks was studied in Bar-Noy, Naor, and Naor [1989a]. The principal
results are examples of problems where this constraint does not slow down the algorithm
as a whole, and other problems where there is provably an O(log n) factor slowdown.
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Computation on a Grid

Bar-Noy and Peleg [1989] studies computation on a "mesh of busses," a two- (or more)
dimensional network, in which any processor can broadcast to its row or column in one step.
Previous algorithms for the model had assumed that a square mesh was the most efficient
shape. However, this paper shows that for census functions (associative and commutative
operations like addition) applied to a value at each node, a somewhat rectangular shape
is optimal. For example, 256 nodes should be arranged as 8 x 32 rather than 16 x 16.

Computation in Fault-Tolerant Networks

Bar-Noy, Dolev, Koller, and Peleg [1989] describes some positive results on solving coor-
dination problems in unreliable distributed systems. It is possible to solve many variants
of the basic critical-section problem. In comparison, the consensus (Byzantine agreement)
problem is known to be unsolvable in this model.

Circuit-Value Problems and Network Stability Problems

Mayr and Subramanian [1989) develops a method for non-trivially limiting fanout in a
circuit, and studies two problems on limited-fanout circuits: circuit value and stability.
The circuit-value problem (given a combinational circuit and input values, what is the
output?) for these classes of circuits each defines a class of problems whose parallelizability
is unknown, in the sense that each lies between NC and P. Some common problems are
shown to be in this class, including corresponding stability problems (in a network with
cycles, is there a consistent assignment of truth values to the outputs of all gates?).

In the stable matching problem, we seek to match people in pairs, subject to some
preference information, in "divorce-proof" ways. The paper Subramanian [1989] shows
that this problem may be viewed as a problem about fanout-limited circuits with feedback.
Consequences include putting this problem into the class CC (one of the classes defined in
Mayr and Subramanian [1989]), thus giving evidence that this problem has intermediate
difficulty of paralleization.

Some Algorithmic Ideas

Chrobak and Naor [1989] shows how to use local transformations on a graph, which may be
performed in parallel, for a fast solution to the problem of finding a large independent set.
Chrobak, Naor, and Novick [1989] shows how to use the technique of finding a spanning
tree where each node is of limited degree.

Network Decomposition

Awerbuch, Goldberg, Plotkin, and Luby [1990] develop a technique for designing dis-
tributed algorithms: they show how to partition a network into small-diameter clusters
such that the graph of clusters has low chromatic number. For example, they apply the
technique to find maximal independent sets. That is, they assume a graph is distributed
over several nodes, and they try to find a set of nodes, no two of which are connected by
an edge, such that all other nodes are adjacent to some node in the set. This classical
problem is very important for parallel computation in general; it lets us find maximal sets
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of operations that can be performed in parallel without conflict.
They show how to find maximal independent sets in a distributed network of n nodes

in n' time for any e > 0. The same technique is used to find near-optimal colorings of
graphs and to find breadth-first orders for graphs. All these algorithms are faster than
previously known distributed algorithms for their problems.

Interior-point Methods

Goldberg, Plotkin, Shmoys, and Tardos [1989] have a technique for applying interior-point
methods (like Karmarkar's algorithm) for linear programming, in parallel. They produced
sublinear parallel algorithms for bipartite matching, and certain cases of the assignment
and flow problems. Agair, these algorithms are the fastest known parallel algorithms for
their problems.

Max Flow

Goldberg [1990] gives a parallelization of the "maximum distance discharge" algorithm for
max flow, which he shows experimentally to be efficient (serially) compared to other serial
flow algorithms. The parallel implementation of this algorithm uses work (processor-time
product) within a log factor of the serial time, and thus is the best known parallel flow
algorithm.

Secure Transmission

Dolev, Dwork, Waarts, and Yung [1990) addressed the question of secure (secret) transmis-
sion in faulty networks. The assumption is that an adversary can listen in on some limited
number of lines of the network, and that the adversary can also disrupt transmission, that
is, introduce false signals, into some limited number of lines. The goal is to guarantee
correct transmission of messages, without the adversary learning anything.

The authors show lower bounds on the connectivity of the network involved, and give
provably secure algorithms for networks of adequate connectivity. Their algorithms, for
the first time, do not rely on any complexity-theoretic assumptions, like P # A/P. Further,
their algorithm runs in time that is linear in the network size.

Eventual Byzantine Agreement

Halpern, and Moses, and Waarts (1990] investigated eventual Byzantine agreement (EBA)
in networks of faulty processors (the ability of good processors to agree on a value in the
presence of failures). By applying a new construction, twice, they can turn any EBA
protocol into an optimal one (which runs as fast as any other on all possible data).

Asynchronous PRAM

Phil Gibbons has continued his work on a PRAM model (the A-PRAM) that accounts for
the cost of synchronizing processors and the cost of accessing nonlocal memory. In Gibbons
(1990b], the relative power of several methods for performing pairwise synchronization of
processors was established, and algorithms for minimizing synchronization in the A-PRAM
were developed. Lower bounds on the performance of the A-PRAM, and simulations of
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conventional PRAM's were also found.
Gibbons [1990a] also has developed and shown correct, a cache-management algo-

rithm for simulating A-PRAM's. His algorithm involves prefetching and overlapping of
instructions with the service of cache misses, and represents a novel compromise between
the programmer's and the hardware's responsibility for achieving fast parallel algorithms.

Small-Bias Probability Spaces

Naor and Naor [1990] offers a technique for limiting, and in some cases, eliminating, ran-
domness in parallel algorithms. The idea centers around a construction for selecting a
small (polynomial-size) set of assignments to n random variables, such that for any subset
of these variables, the number of assignments making an odd number of the variables in
this subset equal to 1 is approximately 50%.

Fast Routing in Fast Networks

Azar, Naor, and Rom [1990] consider networks in which the transmission speed is too
great to allow much computation at the intermediate nodes. In such a network, the route
selection must primarily be the function of the source node, with only minimal work at
each intermediate node. One approach is to fix the route completely, in advance. For this
strategy, they give a polynomial algorithm for balancing the average use of network links.
Another approach is to "flood" the network, effectively broadcasting each message. They
show how to limit the degree of flooding, while still guaranteeing message delivery.

Comparison Merging

Azar [1990a] has given lower bounds and matching algorithms for the general problem of
merging n/m ordered lists of m elements each, using p processors. For example, sorting is
the case m = n.

Single-Cell Communication

The problem of computing using a local-area network (or a bus for that matter) can
be represented abstractly by a PRAM with a single memory cell. That is, there are n
processors, each able to communicate only by reading and writing this one cell. It is
normal to assume some arbitration rule for writing in all PRAM models, and in this case,
arbitration is essential. Azax [1990b] shows some lower bounds on what this model can
achieve. The arbitration rule is "priority," that is, the lowest-numbered processor that
wishes to write is allowed to write. For instance, Azar shows that if each of n processors
is given a bit, it takes at least fl(m) time to determine if at least rm of the bits are 1,
provided m grows slower than V/-.

Coupled Execute/Control Processor Architecture

Andy Freeman has designed and simulated a new processor architecture for use in mul-
tiprocessors. The basic problem is designing processors that can cope with long memory
latency.. His approach is to couple two processors by two-way queues; neither processor has
the capability associated with conventional processors. One executes only "straight-line
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code," i.e., computations, and the second executes only tests and branches. Through sim-
ulation he has shown the superiority of this architecture on applications that are similar to
"vectorizable" computations, including those on which vector architectures perform well
and some that are (slightly) too sequential for vector processors. No reports on this work
have yet been produced.

Timestamping in Networks

Orli Waarts and Cynthia Dwork of IBM have looked at the question of assigning times-
tamps in an asynchronous network of processors (Dwork and Waarts [1991]). The model
is that of shared memory, where the processors communicate through a memory accessible
to all; the memory, like the processors, may be distributed. The problem is to issue tickets
in a first-come-first served order when there are unlimited numbers of requests for service
that may arrive asynchronously. Their solution uses time proportional to the number of
processors involved, while previous solutions were superlinear.

A key problem to solve is avoiding a bottleneck at one memory location. Obvious
approaches have the processors queue up for access to a counter that assigns timestamps.
The solution of Dwork and Waarts uses instead a bounded timestamp, which is in the form
of a vector of values, one for each processor. Each processor controls one component of
the vector. In particular, we must be able to recycle timestamps so we do not confuse a
new value with an old, identical value. We avoid this problem by allowing each processor
to designate which of its values comes first; the others follow in a fixed, cyclic order.

Linearizable Counting

A related problem, called "linearizable counting," assigns consecutive integers to processors
(timestamping assigns tokens, which might be integers, to processes) in a first-come-first
served order. The algorithm of Herlihy, Shavit, and Waarts [1991] performs this assignment
in time proportional to the number of processors, and does so in a way that does not
produce a bottleneck at a shared memory location.

Processor Assignment

Yossi Azar and Joseph Naor, with R. Rom of IBM, looked at the problem of on-line
assignment of tasks to processors (Azar, Naor, and Rom [1991]). That is, a sequence of
tasks enter the system asynchronously, and each can be performed by any of a subset of
the n processors. We must assign tasks to processors as they enter, and the object is to
balance the load on the processors. They offer an algorithm that can be no worse than a
factor log 2 n, compared with a "clairvoyant" algorithm that can predict future demand for
the various processors. They also show this ratio is best possible. Further, they consider
the use of a randomized algorithm for the same assignment problem, and show that a ratio
of loge n is sufficient and best-possible.

Derandomization of Algorithms

Many of the best known parallel algorithms are probabilistic, in the sense that they perform
well with high probability, but there is no guarantee they will finish in any particular
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amount of time. In many cases, it is possible to replace a probabilistic, parallel algorithm
by a deterministic parallel algorithm by discovering a small set of bit strings that can
represent possible sequences of "coin flips" (the steps that introduce the randomization).
It is necessary that these small sets have certain properties of pseudo-randomness, in the
sense that on any input there is at least one among them on which the probabilistic
algorithm will terminate relatively quickly.

Azar, Motwani, and Naor [1991] address the problem of approximating arbitrary joint
distributions of random variables. They construct, for any c > 0, a set of strings that
is of size polynomial in both the number of variables and 1/c, whose joint distribution
approximates that of the given distribution, in the sense that none of the coefficients of
the Fourier transform of the two distributions differ by more than c. This result can be
used in two ways. One, it is possible to run the original random algorithm using each of
the strings of "coin flips" in the set, in parallel, terminating as soon as the first among
them terminates. Second, it allows one to replace a large number of coin flips by a smaller
number (the logarithm of the size of the set) that is "almost as random" as the original.

Bipartite Matching

Andy Goldberg and Serge Plotkin looked at the open question of sublinear (NC) algorithms
for parallel bipartite matching (Fisher, Goldberg, and Plotkin [1991]). This problem, in
addition to being one of the most important of the classical combinatorial problems, has
special significance for parallel computation because a number of other important problems,
such as depth-first search, are known to have NC algorithms if bipartite matching does.
They show is that there is an NC algorithm for a strong form of approximate matching,
where, with different versions of the algorithm, they can guarantee a matching that comes
within 1 - e of the maximum match for any c > 0.

Earlier work on using interior point methods in parallel algorithms has appeared in a
journal (Goldberg, Plotkin, Shmoys, and Tardos [1991]).

Network Flow Problems

A survey of parallel algorithms for network flow was published (Goldberg, Tardos, and
Tarjan [1990]). Also, earlier work on reducing the number of processors needed to solve
network flow problems in parallel appeared in a journal (Goldberg [1991]).
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